التخطي إلى المحتوى

العدد الصحيح (Integer) عدد نستطيع كتابته خالي من الكسور ويمكن أن يكون خالي من الفواصل العشرية، والأعداد الصحيحة تتكون من الأعداد الطبيعية مثل (1، 2،3..) وأيضًا تتكون من الصفر والسوالب مثل (-1،-2….)، الأعداد الصحيحة مجموعة ليست منتهية مثلها في ذلك مثل الأعداد الطبيعية، وفي العادة يتم الرمز للأعداد الصحيحة  بحرف (Z) وهو حرف لاتيني تم اشتقاقه من كلمة (Zahlen) ومعناها العدد باللغة الألمانية، فالعدد الصحيح يمكن أن يكون (موجب أو سالب أو صفر).

ماهي الأعداد الصحيحة

الأعداد الصحيحة وتمثيلها على خط الأعداد

خط الأعداد طريقة من الطرق التي نستطيع من خلالها أن نمثل الأعداد، من خلال أن نرتبهم على خط طويل أفقي ممتد إلى المالانهاية يمينًا ويسارًا، والأعداد تتوزع عليه بحسب خصائص معينة وهي:

  • وسط خط الأعداد الصفر، والأعداد الأكبر من الصفر تكن يمينه، والأعداد الأصغر من الصفر تكن يساره.
  • الأعداد الصحيحة التي تقع على يمين السفر الأكبر منه، هي أعداد موجبة صحيحة، وتمثل بالرمز (+).
  • الأعداد الصحيحة التي تقع على يسار الصفر الأصغر منه، هي أعداد سالبة صحيحة، وتمثل بالرمز (-).
  • فالصر لم يكن موجب ولم يكن سلبي، فهو عدد متعادل صحيح.
  • العدد الصحيح له إشارة وتكون هذه الإشارة (موجبة أو سالبة)، ما عدا الصفر لا توجد إشارة له.
  • عندما تكون المسافة الفاصلة بين العددين الصحيحين والصفر متساوية فإن العددين الصحيحين يكونان متعاكسان.
  • حيث أن أحد العددين يكون على يمين الصفر والآخر على يساره، مثل (+3، -3).

شاهد ايضًا : تفسير رؤية الاعداد او الارقام في الحلم

توجد عمليات حسابية أساسية على العدد الصحيح

  • الأعداد الصحيحة تتميز بأن نواتج جمعهم أو طرحهم أو ضربهم، يجب بالضرورة أن تكون نواتج أرقام صحيحة، فمثلًا (1+ 1= 2)، (2-4= 2).
  • فكل هذه الأعداد سواء في الجمع أو الطرح أو النواتج أعداد صحيحة، ولكن في القسمة ناتج العددين الصحيحين عند قسمتهم يجب أن لا يكون عدد صحيح.
  • وعامة خصائص الجمع والضرب المعروفة لعملية جمع وضرب أي عدد صحيح تنطبق جميعها كالخاصية التبديلية، وخاصية التوزيع، والخاصية التجميعية، وغيرهم.

شاهد ايضًا : المادة التي لا يمكن تجزئتها إلى مواد أبسط منها تسمى

العمليات الرياضية التي نستطيع أن نطبقها على كل الأعداد الصحيحة

سنتعرف على العمليات :

عملية الجمع

توجد بعض الأمور التي تكون متعلقة بعملية الجمع للأعداد الصحيحة وهي ما يلي:

  • وفي حالة جمع عددين موجبين فإن نتيجتهم تكون موجبة.
  • عندما نجمع عددين يكونان سالبين النتيجة تكون سالبة.
  • عندما نجمع عدد سالب مع عدد موجب، في هذه الحالة الإشارة التي توضع مع النتيجة تكون مثل الإشارة الموضوعة في العدد الأكبر.
  • وهذه العملية تتم بأن نطرح العدد الصغير من العدد الكبير وبعد ذلك نضع إشارة العدد الكبير.

عملية الطرح

  • عملية الطرح يميزها أنها تحتاج لتغيير إشارة المطرح في بعض الأوقات، وذلك في حالة أن العدد يكون سالب.
  • عندما يجتمع إشارتين سالبتين وراء بعضهما البعض يتم تحويل هاتين الإشارتين إلى الموجب، فبذلك تتم العملية بطريقة الجمع.
  • فعلي سبيل المثال عند طرح (-1) من (2) فإن (-1) يصبح (1) وبالتالي تكون المسألة 2_(_1) = 2+1=3).
  • ولكننا إذا أردنا طرح (1 من 3) فلا نحتاج إلى تغيير الإشارة وتكون المسألة (3_ 1= 2).

شاهد ايضًا : شرح درس المنادى

عمليتا القسمة والضرب

  • يجب عندما نُجري العمليتين (القسمة والضرب) في الأعداد الصحيحة يجب معرفة شارة الناتج عن هذه العملية.
  • حيث أنه إذا كانت إشارة الأعداد التي تم ضربها أو قسمتها متماثلة فالنتيجة (موجبة)، أما إذا كانت الأعداد إشارتهم مختلفة فالإشارة سالبة.

وفي النهاية نكون قد أوضحنا في مقالنا  أهم الأجزاء عن الأعداد الصحيحة و طريقة العمليات الحسابية في الأرقام الصحيحة وتوصلنا لفهم وضع الإشارات في العمليات الحسابية كالطرح والجمع والضرب والقسمة.

التعليقات

اترك تعليقاً

لن يتم نشر عنوان بريدك الإلكتروني. الحقول الإلزامية مشار إليها بـ *

هذا الموقع يستخدم Akismet للحدّ من التعليقات المزعجة والغير مرغوبة. تعرّف على كيفية معالجة بيانات تعليقك.